
Data Management System for grid and portal
services

Piotr Grzybowski1, Cezary Mazurek1, Paweł Spychała1, Marcin Wolski1

1Poznan Supercomputing and Networking Center, ul. Noskowskiego 10,
61-704 Poznan, Poland

{piotrgrb, mazurek, spychala, maw}@man.poznan.pl

Abstract: Poznan Supercomputing and Networking Center has been
involved in continuous research concerning the development of grid-
portal environments. In the scope of the PROGRESS project, we have
designed and implemented the Data Management System (DMS). The
DMS is an example of a service which might support other grid and
portal services. Its main task is to store and manage computational
data. One of the additional functions is proxy to other databases and
data accessed from the Internet. The next function is mirroring the
external database. In this paper we present the DMS architecture and
the functionality of its main modules. The DMS provides an interface
for other clients. The client (e.g. external service) can be a broker or
special DMS client e.g. computational web portal. The DMS can also
manage several replicas of data and allow access and mirror external
databases. Data can be stored in several ways: in computer filesystems,
in databases or on tape storage systems. The main functionality of the
presented system has already been implemented and it was deployed as
a part of the testbed presentation on SC2002 exhibition.

1. Introduction

Data management is one of the core services in the Grid systems. Grid
computing is an important new field focused on large-scale resource sharing.
We integrate both those issues within the PROGRESS project aimed at
creating an “Access Environment to Computational Services Performed by
Cluster of SUNs” [6]. The PROGRESS is currently under development in
Poznan Supercomputing and Networking Center (PSNC). The initiative,
undertaken in the scope of the PIONIER National Program [13], started in
2001 and is funded by the State Committee for Scientific Research and Sun
Microsystems Poland. The demo version of the PROGRESS HPC Portal
testbed, including DMS, was presented at the Supercomputing 2002 (SC2002)
conference in Baltimore. This project is developed by PSNC in co-operation
with: University of Mining & Metallurgy in Kraków and Technical University
of Łódź. In the following chapters we describe the known Data Management

Environments (Ch. 2) and the overall PROGRESS architecture (Ch. 3).
Further on we present the DMS architecture (Ch. 4) and discuss our approach
to transferring data files in the DMS (Ch. 5). Future work is described in
chapter 6.

2. Data Management Environments

One of the most advanced concepts for data management is being
developed within the Gryphin project. The Gryphin (Grid Physics Network)
[1] project is team collaboration that will implement the first Petabyte-scale
computational environments for data intensive science. GriPhyN deploy
computational environments Petascale Virtual Data Grids (PVDGs) that meet
the data-intensive computational needs. Data analysis for huge computing
tasks causes that computing and storage resources required should be
distributed for both technical and strategic reasons across national centers,
regional centers, university computing centers, and individual desktops. The
GriPhyN collaboration proposes to carry out the necessary computer science
and validate the concepts through a series of staged deployments, ultimately
resulting in a set of production Data Grids. GriPhyN pursues a program of
fundamental IT research focused on realizing the concept of Virtual Data.
Virtual Data encompasses the definition and delivery to a large community of
a (potentially unlimited) virtual space of data products derived from
experimental data. In this virtual data space, requests can be satisfied via
direct access and/or computation, with local and global resource management,
policy, and security constraints determining the strategy used.

One of the most interesting systems dedicated to managing data resources
was created by the National Partnership for Advanced Computational
Infrastructure (NPACI). The SDSC Storage Resource Broker developed there
(SRB) [2] is a client-server middleware that provides a uniform interface to
connect to heterogeneous data resources over a network and access replicated
data sets. In conjunction with the Metadata Catalog (MCAT) it allows to
access data sets and resources based on their attributes rather than their names
or physical locations. SRB is presented as a package that is a sort of a
distributed file system with some elements of data grid management. Using
SRB requires using supplied C-style API. The system has been developed for
several years and used in a number of projects, including Gryphin (Grid
Physics Network [11]).

The Storage Resource Management (SRM) [10] Middleware Project
(related to the Gryphin) develops common application interfaces to data and
deploys them in real grid applications. The project targets both tape-based and
disk-based systems and designs their interfaces so that they inter-operate. The
purpose of this project is to address the problem of managing access to large
amounts of data distributed over the sites of the network. Architecture of
Storage Resource Managers (SRMs) assumes that SRMs are associated with

each storage resource on the grid in order to achieve coordinated and
optimized usage of these resources. The term “storage resource” refers to any
storage system that can be shared by multiple clients. The goal is to use shared
resources on the grid to minimize data staging from tape systems, as well as to
minimize the amount of data transferred over the network. The main features
of this system support local policy (for each storage resource), temporary
locking files, advance reservation, dynamic space management and estimates
for planning.

The fundamental objective of another data-bound project - the DataTAG
project [9] - is to create a large-scale intercontinental Grid testbed involving
the European DataGrid project, several national projects in Europe, and the
related Grid projects in the USA. The main goal of this project is to work out
transparent access to the massively distributed computing infrastructure that is
needed to meet the challenges of modern data intensive applications.

Another DME that can be quoted as an example of such system is Spitfire
[3]. Spitfire is a project of Workpackage 2 [4] within the European Data Grid
Project [5]. It provides a Grid enabled middleware service to access relational
databases, using the Spitfire Client- Server library modules and command line
executables. Access to various RDBMS systems is possible through standard
protocols and describing their interfaces. It defines appropriate SOAP-based
services which are realizing internal functionality. User gets client-side APIs
provided for java and c++ for the SOAP-enabled interfaces.

All of those presented systems are in some ways similar to the Data
Management System, which is being developed in PSNC. When creating a
specification of DMS [6] for the PROGRESS project, the working team made
a few assumptions. Decisions that were taken led to the development of a
project of DMS that should be able to work with different kinds of data
storage resources (similarly to other described systems). Storing data will be
realized basing on logical structures similar to a standard file system structure
(with catalogs and flat-files enhanced with the links and containers
functionality). The logical structure is independent of the physical storage
resource type. Data stored within the PROGRESS DMS can be described by
additional information collected into the meta-data repository. Flexibility of
assessing the data requires that they are available using different kinds of
standard data transfer protocol (e.g. FTP, GridFTP [8] and GASS [7]) and
should not demand to use a special sort of client libraries to access the stored
data. This has led to working out a common interface that allows to get data
from (and put them to) DMS without additional necessity of changing the
code of client applications. The other important problem to solve during
projecting and implementing DMS was flexibility of using different kind of
resource storing solutions. Having in mind this assumption the PROGRESS
work team have decided to use modular internal architecture of DMS with
various modules realizing operations on various kinds of storage systems (e.q.
standard flat-file systems, database systems or archiving systems like tape

archive system). All those data containers work basing on common interface;
thus they are services by the DMS in the same way as well. Using the SOAP
standard and java coding within internal infrastructure makes this DMS useful
and easy to modify for a specific solution. The functionality of DMS meets
the requirements of grid environments like all other DME’s do; however, its
architecture and implementation through their flexibility assure adopting any
of open architectures for grid services (e.g. OGSA [15]).

3. DMS as a part of the PROGRESS project

The PROGRESS project architecture provides the implementation of five
components which together form an example of grid-portal architecture. One
of the crucial items of the PROGRESS grid-portal achievements is Grid
Service Provider (GSP). The main task of the GSP is providing a flexible and
comfortable way of accessing the grid resources. The GSP serves as a
mediator between the user interfaces, such as the WP, and the grid. Along
with the GSP, four other modules constitute the system: the web portal (WP),
the migrating desktop (MD), the data management system (DMS) and the grid
resource broker (GRB). The PROGRESS grid is powered by three Sun Fire
6800 servers, placed in Poznan and Cracow and connected by the Polish
National Research Network.

The GRB enables the execution of PROGRESS grid jobs in a real
distributed cluster of three Sun computers. The cluster is managed by Sun
Grid Engine software with Globus deployed upon it. The GRB provides two
interfaces: a CORBA interface and a web services one. The SC2002
PROGRESS demo used the former one, but this will be changed to the latter
in the final deployment. Grid job definitions are passed to the GRB in form of
an XRSL document and the GRB informs the GSP about events connected
with the execution of a job (start, failure or success).

The PROGRESS GRB module uses the DMS to store the input and output
files of computed jobs. The DMS includes a data broker which handles all
requests. Interface of this module is based on the ‘web services’ technology.
The DMS can be equipped with three data containers – file system, database
system and tape storage system. The DMS prepared for SC2002 demo was
using only the first one; work on the rest of them is in progress. A data file is
referenced within the DMS with a universal object identifier. The identifier
allows obtaining information on the location of the file. Each file may be
downloaded or uploaded using one of three possible protocols: FTP, GASS
[7] or GridFTP [8].

The PROGRESS architecture and the communication manners between
modules are illustrated on figure 3.1.

Fig. 3.1 The PROGRESS architecture and communication

The DMS data files are organized as a directory tree, therefore a natural
user interface for management of the DMS files is a directory browser. Such a
browser is a part of the PROGRESS WP. It allows adding, renaming and
deleting directory and file entries. Addition of files gets a form of a web
browser file upload. After a file is uploaded to the web server where the WP is
installed, the WP service responsible for contacts with the DMS adds a file to
the metarepository (using a proper data broker method) and stores the file
using the FTP protocol (more detailed in chapter 5). The files may also be
retrieved with the usage of the WP (Web Portal). The WP service, knowing
the file reference, starts the retrieve sequence by learning the current FTP
URL for the file. The URL is then passed to the user in a form of a web page
link. The user completes retrieving the file by downloading data from the
indicated link.

The PROGRESS grid job descriptor contains references to job input and
output files as well as to binary executable of the application to run. While the
input files are simply chosen from the directory tree by the user and their
references are stored in the descriptor of the job being built, the output files
must be created first. So, the user forces the WP to add a file entry in the
desired directory and save the new file reference in the job descriptor. The
reference to the application descriptor is entered through a user choice from a
drop-down list on a web page; the user decides what application to run. After
the job is submitted to the GSP, its Job Submission service prepares the XRSL
description of the job and passes it to the GRB for execution.

After successful parsing of the description the GRB retrieves the required
input files and the application binary code. It contacts the DMS data broker
and requests the GridFTP URLs. Then the data are downloaded. After the
retrieval of files the job is executed in the grid. The completion of the job
indicates that the results should be now stored in the DMS. The GRB
performs the store sequence for all the job output files. From now on, the
completed computing experiment results are available to user.

Also, a few features that make the DMS system powerful and universal are
worth mentioning. The system universality is revealed in its possibility to
integrate different kinds of storage resources, enable access to data using
different transport protocols, and enhance the functionality of the DMS by
preparing new modules compatible with common interface. Other features
include the possibility to build metadata schema and create matching access
policy fulfilling the applied assumptions. The need of data integration in grid
environment, where data are stored under different locations and on different
storage systems, resulted in the creation of data sets that can be understood as
a virtual data catalog.

The Metadata module of the DMS allows adding some extra information
assigned to the real data stored using a traditional storing system. This feature
creates a possibility of integrating data resources of different kind and for
different purpose in a common schema. On the other hand, the subsets of data
that share common features can be assigned to unique category. It is done by
selecting or even creating a new metaschema.

A separated module devoted for implementing direct interface to the
storage system – called the Data Container – provides uniform access to the
storage resources independently of the internal structure of this resource.
Prepared modules can hold data using flatfiles on standard file systems or data
files stored in tape archive systems, or keep them in the database records. In
the beginning we prepared a Data Container module that works on flatfiles
and supports the FTP, GridFTP [8] and GASS [7] – both secure and standard
versions.

The modularity of the internal structure of the DMS allows creating an
open system. The data sets can be stored on different media types (as
mentioned above) alternatively data can by acquired from other system such
as SRS. (Sequence Retrieval System) which collects bioinformatic data. This
integration possibility opens an interesting opportunity to deliver data
resources outside of DMS scope.

The possibility of creating a separate access policy for the data stored in
DMS gives the ability to create different polices which satisfy local
authorities.

The DMS modules use a well defined interface for internal cooperation
based upon the SOAP communication protocol. This approach enables
effortless consolidation of additional modules compatible with the DMS
interface regardless of the implementation language.

4. DMS architecture

DMS considered as an internal service supporting grid computing.
The main task of this system is storing and managing the computational data.
One of the additional functions is proxy to other databases and data accessed
from the Internet. The next function is mirroring the whole or a part of the
external database. DMS consists of three logical layers. The highest layer of
the DMS is a metadata repository that keeps information about the data
managed by the system. The second layer consists of the Data Broker and the
Mirror & Proxy. The Data Broker is an interface between the external client
and DMS. The client (e.g. external service) can be a grid broker or special
software DMS client e.g. computational web portal. The Data Broker can also
arrange several replicas of data. The mirror and Proxy is responsible for
accessing and mirroring external databases. The main purpose of this module
is to grant access to various external objects in a uniform way. The lowest
layer is the Data Storage. This layer is responsible for the physical storage of
data. This module can store data in several ways: in computer filesystems, in
databases or on tape storage systems.

The whole system uses the "web services" approach to co-operate
between all modules and other components of the grid. Great emphasis was
placed on the design system according to other data management systems and
the proposed standards from the international bodies. The described structure
is shown in the figure below.

Fig. 4.1

 The Metadata Management and repository

The Metadata Management module (MD) is one of the most important
modules. You can think of the repository as a place where metadata are
stored. The Metadata Management module is responsible for storing and
manipulating metadata. The data are described with attributes and access
rules. In fact the metadata are stored in an object database in a property=value
format. This format can be defined by user or chosen from the predefined
formats like the Dublin Core [14] (DC) standard. We decided to run the MD
module as a single instance service. This decision was made because of
complexity with handling metadata information which is stored in the MD
module. Running multiple instances would generate issues, which concern
problems with data consistency and reliability. Consistency and reliability of
metadata can be provided by a replication mechanism in the underlying
database system.

 The Data Broker and Mirror & Proxy module

The Data Broker (DBR) is an access point of the DMS system. The key
functions of this module are: serving the client requests with authorization and
managing of replicas in DMS. DBR module is the access point for all other
services or users requesting data operations. This module can be run in
multiple instances to assure reliability and good scalability. All kinds of
requests addressed to the DMS system flows through the DBR module. The
system can use multi instances of this module. This approach provides the
system with efficient data processing. Because of a need for client
authorization procedures in the DBR module it is possible to create local
system access polices for users. Polices are managed by organizations which
runs the DBR module on their resources. The DBR module manages data
replicas that are stored in Data Storage modules. The main function of the
Proxy module is to relay communication between a client and shared
resources in the Internet. This module caches frequently accessed resources
and offers uniform interface. This module stores the cashed data with special
attributes in the Data Storage module. The basic functions of the Mirror
module are to care about the consistency of data and mirror the earlier defined
set of data. This module can use the remote resources through the proxy
module.

 The Data Storage

The Data Storage module enables access to physical data. The data are
arranged in data containers and can be stored on all media types and accessed
by uniform interface. The data can be organized as files on generic
filesystems, BLOBs in databases or files on data tapes. In the distributed
scheme Data Storage modules can store data in one or more media. The most
important functions of this module are: reading and writing data, providing

data security, sharing data via protocols: GASS [7], GridFTP [8] and FTP.
The DMS system can use multiple instances of the DS module. This approach
enables uninterrupted data accessibility even in case of network connection
failure or system crash on which the DS module operates. This module is also
capable of finding optimal DS module for client connection.

The general architecture of the DMS system is shown in fig. 4.2

Fig. 4.2

5. Managing of the data files’ transferring in the DMS

The main part of the DMS, which plays a significant role during the
process of the files’ transferring, is the Repository Catalog (RC). This module
generally acts as the information service provider that can be queried to
discover the physical locations of logical files.

Additionally, the RC component must interact with the Data Containers
to estimate the optimal location for storing or retrieving data.

The metadata catalog contains semantic information that describes the
location and content of data files. Users or applications can query this
Metadata Catalog to identify files with the desired attributes or to obtain the
physical file’s location.

Storing and retrieving data in the DMS

Unique functionality implemented in the DMS is handling the date
transfer from and to the DMS. The uniform mapping between the logical file’s

instances and their physical locations is done by keeping all the required
information in the DMS, which are the following (according to [12]):

LFN – logical file name. This attribute is globally unique in the DMS
for a given dataset by using a unique number generated by the repository.

SFN – site file name. The site file name consists of a
“machine:port/directory/LFN”.

SURL – site URL. This is a “site URL” which consists of
“protocol://SFN”.

TFN – transfer file name. This is the “transfer” file name of the actual
physical location of a file that needs to be transferred. It has a format
similar to an SFN

TURL – transfer URL. This is the “transfer URL” that DMS returns to
a client for the client to “get” or “put” a file in that location. It consists of
“protocol://TFN”, where the protocol must be a specific transfer protocol
selected by client from the list of protocols supported by the DMS. If the
physical storage location matches the one provided by the SURL, then
only the protocol is replaced in the TURL.

In order to discuss the process of retrieving data in the DMS we have
illustrated this by an example (see Fig.5.1).

Communication Protocol
(SOAP)

Data broker

Data
Container

Data
Container

I

II

Catalog
module

Repository Manager

Decision
Module

Repository Catalog

LFN SFN
Location

State

METAREPOSITORY

III

Storage

Storage

IV

V

V

IV

X

XI Portal

VI

VII XV

XII
XIII

VIII
IX XIV

RETRIEVING DATA DIAGRAM

Fig. 5.1

We assume that a client application wants to access a data file and it
possesses its logical name only. Let us make another assumption that the
client will access data via FTP protocol. The client program sends a logical
file name to the Data Broker in order to receive the site where the
corresponding physical file is stored (I). The Data Broker accepts this request
and first it asks the authorization module if the user has the appropriate rights
to perform this operation. The successful authorization is required to carry on
this request execution; otherwise the request is rejected.

In the next step DB creates the query to the Repository Manager (RM),
which can be presented in a readable form: “Get the URL for the file
identified by LFN ready to get via FTP protocol” (II). The SOAP envelope is
formed and passed on to the RM.

Now the RM has to determine the optimal location and it performs
several steps to accomplish the job:

Enter the critical section. This prevents deadlock of the concurrent
process

Retrieve all the SFN of the given logical file’s name from the metadata
(III)

Query the remote Data Containers if the analyzed file is ready to
download to determine the optimal file location for the given request (IV, V)

On the basis of all the collected data (described in the previous steps)
RM makes a decision from where the file will be downloaded, enabling them
to read access on the appropriate DC (VI).

The selected Data Container blocks the physical file from deleting (VII),
return the site URL of the chosen data file and the RM change the meta-file’s
location state to the WRITE_LOCK mode for that file (IX).

RM creates a TURL and leaves the critical section
This TURL is sent to the Data Broker as response (X) and it is returned to the
client application (XI) to realize transfer of data (XII).
Finally the Data Container, which was chosen as a source of the transfer data
file, watches the transfer course. When it finishes, DC informs the RM (XIII)
about that situation. Now the RM can release the WRITE_LOCK in the
Repository Catalog (XIV) and on the Data Container module (XV).

In order to discuss the process of storing data in the DMS in a more
detailed way we have illustrate this by an example (see Fig.5.2).

Communication Protocol
(SOAP)

Data broker

Data
Container

Data
Container

I

II

Catalog
module

Repository Manager

Decision
Module

Repository Catalog

LFN SFN
Location

State

METAREPOSITORY

III

Storage

Storage

XI
IV

VIII

IX Portal

VI

V XIII

X

V VII

STORING DATA DIAGRAM

XII

Fig. 5.2

Let us have a look at data storing by means of modules of the DMS.
We assume a client application wants to store a set of data (a data file) under a
logical name using GASS protocol for transfer. The client program announces
the Data Broker that it wants to put the data file under the DMS control
having a logical file name (which comes from the user decision) (I). When the
Data Broker gets that kind of request, it has to check the user permission to
operate the stored data. To hold this, it first asks the authorization module, if
user has the appropriate rights to perform this task. The successful
authorization is required to carry on this request execution; otherwise the
request is rejected.

The next step belongs to the DB. It sends the save-data request to the
Repository Manager (RM) (II). That kind of request causes the RM to create a
record about file in the metarepository (III). This operation completes with
getting the logical file name for a new user file (name which is an internal
system name of that file). In the next step the RM tries to find the location for
a new file. Having additional information about the expected size and
preferred protocol to realize the transfer, the RM has to determine the optimal
location and it performs several steps to accomplish the whole job:

Choose list of appropriate Data Containers for storing data file of the
given size under a given logical file’s name according to the information
about the accessible Data Containers collected in the metadata

Query the remote Data Containers to determine if it is able to get the
data file for the given request

On the basis of all the collected data (described in the previous steps)
RM make a decision where the file will be uploaded.

The selected Data Container is asked to reserve resource space for the
data file (IV) and it allocates space for data in the storage resource controlled
by it (V)

The SFN (site file name) can be constructed now, and it is stored in
appropriate record in the Repository Catalog (V)

The DC has been determined as well, so the site URL (transfer file
name) can now be generated (VI)

RM adds the meta-file’s record and location for a new data file with state
set to the IN_TRANSFER mode (VII)
This site URL (TFN) is sent to the Data Broker as a response (VIII) and it get
to the client application (IX).

After these tasks the client application gets the transfer URL, which can be
used by it to realize the real transfer. The data file will be ready to use when
the file transfer to the DC is finished. The Data Container that got the new file
(according to the previous reservation) reacts to the transfer finish (or fail if
occurs) and informs the RM about state of this operation. The task can be
finished with setting the state of the new file to the READY (if transfer
succeed) or the record about the new file (the transfer of which failed) can be
removed from the repository.

6. Future work

The PROGRESS project is currently under development. Time frame for
the DMS which is a part of it is in May 2003. The most important
functionality has already been implemented. Next plans cover the DMS
adoption to OGSA specification [15]. This enables improved integration
capability with other grid driven projects.

Data management system is required for grid computational
environments. Data sharing and its integration is a crucial issue in
heterogeneous computational clusters. Considering this problem we have
come up with the idea of the DMS system. The DMS incorporates best
features of highly available and scalable systems. We think it will develop
towards open service for data management in grid-portal architecture.

7. Bibliography

1. GriPhyN - Grid Physics Network website. Accessed from
http://www.griphyn.org/index.php

2. SDSC Storage Resource Broker website. Accessed from
http://www.npaci.edu/DICE/SRB/

3. Spitfire Homepage. Accessed from http://spitfire.web.cern.ch/Spitfire/
4. Work Package 2 of the European DataGrid project website. Accessed from

http://grid-data-management.web.cern.ch/grid-data-management/
5. European Union DataGrid Project: http://eu-datagrid.web.cern.ch/eu-

datagrid/
6. PROGRESS website. Accessed from http://progress.psnc.pl/
7. Global Access and Secondary Storage (GASS). Accessed from http://www-

fp.globus.org/gass/
8. The GridFTP Protocol and Software. Accessed from http://www-

fp.globus.org/datagrid/gridftp.html
9. The DataTAG project website accessed from:

http://datatag.web.cern.ch/datatag/
10. Storage Resource Management (SRM) Middleware Project website.

Accessed from: http://sdm.lbl.gov/indexproj.php?ProjectID=SRM
11. Particle Physics Data Grid collaboration website. Accessed from:

http://www.ppdg.net/
12. SRM Joint Functional Design - Summary of Recommendations, January

2002
13. Rychlewski, J., Weglarz, J., Starzak, S., Stroinski, M., Nakonieczny, M.:

PIONIER: Polish Optical Internet. Proceedings of ISThmus 2000 Research and
Development for the Information Society conference Poznan Poland (2000) 19-28

14. Dublin Core standard: http://dublincore.org/
15. Open Grid Services Architecture: http://www.globus.org/ogsa/

http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://www.globus.org/ogsa/

