
Web Services Communication within the PROGRESS Grid-Portal
Environment

Piotr Grzybowski, Michal Kosiedowski, Cezary Mazurek

Poznan Supercomputing and Networking Center, ul. Noskowskiego 10, 61-472 Poznan, Poland
{piotrgrb, kat, mazurek}@man.poznan.pl

tel.+48 61 8582030, +48 61 8582035, fax. +48 61 8525954

Abstract

The grid is the next generation computing

infrastructure able to handle the growing requirements
for computing power. Portals are anticipated as the
user’s access point to these resources. The whole grid-
portal infrastructure constitutes a distributed
environment in which efficient and flexible
communication manners play a key role. The emerging
web services technology has been chosen as the best
solution for organizing communication in grid-portal
systems. In this paper we would like to present the
PROGRESS grid-portal environment in which we
implemented web services communication between
distributed modules of the system.

1. Introduction

The PROGRESS grid-portal environment has been

designed and implemented as a result of the “Access
Environment to Computational Services Performed by a
Cluster of SUNs” project. This initiative was undertaken
within the PIONIER National Program [1] and is funded
by the State Commitee for Scientific Research and Sun
Microsystems Poland. The project will last until May
2003, but we are keen to continue our research
afterwards. The PROGRESS project aims to develop an
access environment to computational resources, which
would allow to create a comfortable work place for grid
users. In Section 2 we present the overall architecture of
the PROGRESS system.

The following sections describe our experiences with
applying the Web Services technology within the grid-
portal environment. Section 3 deals with external
interfaces of PROGRESS system modules. These
interfaces allow for flexible intercommunication between
all PROGRESS items. Next, in Section 4, we present the
internal communication in the data management system,
which is a distributed storage system for scientific data
used in experiments taking place within the PROGRESS
grid. Eventually, in Section 5, we summarize our work
and draw research and implementation paths for the
future.

2. PROGRESS grid-portal environment

The PROGRESS grid-portal environment framework

has been assumed to serve as a solution from the shelf for
deployment of multiple grid access environments in the
scope of the PIONIER program [2]. This could be
achieved by designing a system, the architecture of which
is presented in Figure 1.

Figure 1. PROGRESS grid-portal environment
architecture

The testbed prototype uses three bioX grid enabled

applications for testing developed tools and the integrated
system. These applications are available for running
scientific experiments in the cluster of three Sun
computing systems and two data servers distributed
between Poznan and Krakow, which serve as the
PROGRESS testbed grid. The PROGRESS bioX grid
does not, however, limit the application factory to include
this limited number of applications. We have developed
tools that enable application developers to add their
newly designed applications and publish them in the
PROGRESS system.

The binaries of applications are stored in the data
management system which is also used as the source for
grid job input data and a place for storing the results of
scientific experiments. There is also a special item within
the data management system which serves as a proxy to

scientific data banks – an example of such bank used in
the PROGRESS testbed is the SRS [3].

Applications are executed in the grid basing on the
resource allocation performed by the grid broker. The
grid resource broker analyzes the received computing job
descriptions, downloads the input data and application
binaries if necessary and schedules the jobs for execution.
The job description is passed to the grid broker in the
form of an Extended Resource Specification Language
(XRSL) document [4].

In PROGRESS the job descriptions are prepared by
the grid service provider. This is a layer in the grid-portal
environment architecture introduced in [5]. It allows to
flexibly deploy numerous client interfaces (most of them
are web computing portals) utilizing the same grid
resources [6]. The PROGRESS grid service provider is
equipped with the following services: job submission,
application management, service provider management
and an example of an informational service, the short
news service. The grid service provider serves as a
mediator between user interfaces and the grid. The grid
service provider and its client interfaces constitute the
HPC Window [7].

The PROGRESS user interfaces include the HPC
Portal [8] and the migrating desktop [9]. The PROGRESS
computing portal is a bioX thematic web portal, which
provides users with possibilities of accessing grid
resources underlying the grid service provider,
applications collected in the PROGRESS application
factory and scientific data stored in the data management
system. Additionally, the portal provides means of
utilizing informational services of the grid service
provider. The migrating desktop is an example of a Java
standalone client interface. It allows to manage data
available in the data management system and execute
PROGRESS applications with the use of the grid service
provider.

The security of the grid-portal environment described
above is assured by a specially designed model. It is
based on an intrusion detection system [10] and resource
access decision model [11]. This infrastructure enables
detecting abnormalities in hardware and software
performance and secures the whole system from an
unauthorized usage.

Despite layers mentioned above the PROGRESS grid-
portal environment uses some software components
integrated with the services which have been
implemented by us. The Sun Grid Engine is used as a
platform for management of the resources of each
computing system. The HPC Cluster Tools provide
libraries for parallel execution of grid job processes. The
Globus Toolkit serves as the PROGRESS grid
management system.

3. Web Services communication within
PROGRESS

In the previous section we presented the architecture

of the PROGRESS grid-portal environment. For
communication between the described modules we
assumed the Web Services technology. Additionally, we
use FTP, GASS [12] and GridFTP [13] protocols for
transferring data to and from the data management
system. Communication manners in PROGRESS are
presented in Figure 2.

Figure 2. Communication in the PROGRESS grid-
portal environment

The grid service provider interface is used by the client

interfaces, for example the web portal, and the grid
resource broker. The data management system Web
Services methods are also invoked by the web portal and
the grid broker. Finally, the grid broker provides
functions for communication with the grid service
provider. We describe Web Services operations delivered
by these modules in this section. At the end we provide
an example WS communication scheme between
PROGRESS modules during a session, in which a
computing job is created, submitted and executed in the
grid.

3.1. Grid service provider interface

The grid service provider delivers services which

might be used by grid user interfaces. Each of these
services prepares data for presentation in the client
interface, for example the web computing portal. The
service then is responsible for logical analysis of client
requests and data preparation, and the client (or portal
content provider) for presentation of this data and

interaction with the user. The idea of this division of
functions is presented in Figure 3. The grid service
provider is implemented using J2EE technologies.

Figure 3. Web services communication between a
computing portal and the grid service provider

There are four services available in the current version

of the PROGRESS grid service provider. These are: the
job submission service, the application management
service, the provider management service and the short
news service. They provide client interfaces with multiple
web service operations that allow performing the actions
described further on.

The job submission service allows to create, modify,
submit and delete the computing jobs. The jobs may be
constructed of a single task or a combination of sequences
and/or parallels. The job submission service also provides
operations for managing single tasks of a job, setting
application parameters, adding references to input and
output files, and editing task resource requirements. The
service also delivers an operation for monitoring the
execution of the job. The job submission service is the
only service which provides a method to be used by the
grid resource broker. This operation allows the grid
broker to notify the service provider about changes in the
job execution status.

The application management service enables adding
applications to the application factory, as well as
modifying the definition of and removing the application.
The service also delivers methods for managing virtual
applications, that is templates encapsulating sequences
and/or parallels of application executions.

The provider management service allows to add and
delete services as well as to add and delete instances of
services if the service allows to create multiple instances.
Also modification of the service description is available,
which includes, among others, such parameters as URLs
to the service and to the service WSDL description.

The short news service, which is an example of an
informational service, provides operations for adding,
modifying, deleting and reading news. This service is an
example of a multiple instance service so it is also
equipped with operations allowing to manage its own
instances.

Grid service provider services were implemented using
Sun Forte For Java 4 and the web services development
framework delivered with this package. They are
currently deployed on the J2EE Reference
Implementation server. We plan, however, to improve the
performance of these services using Sun One Studio 4
and the framework delivered therewith, and deploy the
grid service provider to the Sun One Application Server 7
[14].

3.2. Data management system interface

The data management system delivers functions for

directory, file and metadata management. These
operations are available to user interfaces and the grid
resource broker through the front end module of the data
management system – the data broker (see Section 4 for
more information on the data management system
architecture).

As far as directory management is concerned, the data
broker provides operations for adding, removing and
renaming directories, and for retrieving root and current
path as well as changing the path to another: a relative or
absolute one. There is also an operation for listing the
content of the current directory.

For file management we designed methods to enable
adding, removing and renaming files. Additionally, since
files in the data management system may be stored in
numerous data containers, the data broker provides
operations for adding and removing, as well as retrieving,
the physical localization of data. Files may also be put
into archives which are used as regular data containers
within the system – we call them user data containers.
Such containers may be added and deleted with the use of
data broker methods. Finally, it is also possible to add and
remove symbolic links to file and directories.

Eventually, the metadata operations available through
the data broker include metadata scheme management
(adding, removing and modifying). Methods for
retrieving a list of available schemes and the scheme
attributes descriptions are also provided there. Other
functions allow to assign schemes to files and edit values
of attributes. The data broker also delivers operations for
searching the metadata repository for files according to
the provided requirements.

The data broker and other data management modules
(described in Section 4) utilize the Apache SOAP [15]
implementation. They were deployed onto the Jetty

Container [16], which is a Java HTTP server and servlet
container.

3.3. Grid resource broker interface

The grid resource broker delivers six web services

operations for use by the grid service provider. They
allow to submit jobs for execution in the grid, retrieve the
list of jobs executed on behalf of a particular user, get the
status of a job, and cancel, suspend and resume jobs. The
grid broker Web Services were implemented using the
Apache’s Axis framework [17] and deployed onto the
Tomcat application server [18].

3.4. Web Services communication between
PROGRESS modules

The above-mentioned Web Services methods allow for
flexible communication between modules. We illustrate
possible communication schemes with the example of a
computing job creation, submission and execution
session. The session involves the PROGRESS HPC
Portal (a grid user interface), the job submission and
application management services of the grid service
provider, the data management system and the grid
resource broker.

 At first the portal user clicks the “Add job” button on
the PROGRESS portal web page. The provided job name
and description are saved by the portal in the job
submission service’s database with the use of the
saveJob() method. Then the user adds the main task of the
job. The portal retrieves the list of available applications
invoking the application management’s operation
getApplications(). The user chooses the application from
the list and enters the description details for the task and
the task is saved by the portal with the use of the
saveTaskOfJob() operation. The user needs to choose the
input file for the job. This is done with the use of the data
broker’s listUserDirectory() function, which allows to
retrieve the contents of each directory found in the data
management system file tree. Then the user creates a new
file for storing the results of his/her job. To do this he/she
instructs the portal to invoke the addUserFile() method in
the data management system. After both of these actions
the portal saves the references to the chosen or created
files with the use of the job submission service’s
saveStdOfTask() operation.

When the job is fully configured it is submitted for
execution in the grid. First, the portal instructs the job
submission service to prepare the XRSL job description
and submit it to the grid resource broker by invoking the
service’s submitJob() operation. The grid service provider
prepares the description and passes it to the grid resource
broker using its submitJob()). The grid broker analyzes

the job description and retrieves the application binary
and the input data. It uses the data broker’s
getUserFileLocation() method for learning the URLs of
the files and downloads them. Then the job is submitted
to Globus for execution and the grid resource broker
informs the job submission service about the change in
the job status (changeJobStatus()) – the job status is
active at this time. After the job is executed the grid
broker changes the job status to done and retrieves the
location for the output file to upload the results. Then the
status of the job is changed to finished. The portal user
may always retrieve the list of his jobs and check their
status by instructing the portal to invoke the job
submission service’s getUserJobs() and getJobStatus()
functions.

The communication scheme described above is
presented graphically in Figure 4. We want to clearly state
that this is only an example of possible communication
schemes in PROGRESS. However, the bounds of this
paper does not allow us to present all possible actions and
operations.

Figure 4. An example of Web Services operations
invocation

4. Data management system internal
communication

The data management system is a distributed
environment for storing scientific data [19]. In
PROGRESS it serves as the source of grid job input data
and destination for the experiments results. It also
provides the functionality of a proxy to scientific data
banks. Figure 5 presents the data management system
architecture. The metadata repository is used for
managing information about data stored in the system.
The data broker serves as an interface to external clients,
such as the computing web portal and the grid resource
broker. The main purpose of the mirror and proxy module
is to grant access to various external objects, like data
from the SRS system, in a uniform way. Finally, the data
storage modules store physical data in one of numerous

data containers: computer file systems, relational database
systems or tape storage systems.

Figure 5. Data management system architecture

The distributed nature of the data management system

has led to designing an internal communication scheme.
We based it on the Web Services technology (see Figure
6). All but the metadata repository modules can appear in
multiple instances.

Figure 6. Data management system communication
scheme

The metadata repository module is responsible for

storing and manipulating metadata. The format of the
metadata can be defined by the user or chosen from the
list of predefined formats like, for example, the Dublin
Core standard [20]. The decision to run this module as a
single instance service was made basing on the
complexity of the metadata handling problem. Running
multiple instances would require assuring metadata
consistency and reliability. The metadata management
module delivers operations allowing to change meta-
information about files stored in the data management
system, create and remove files, add, delete and manage
the meta-information connected with files. The metadata
repository requires authorization; therefore it delivers
functions which assure the authorization of users. This
module stores all information about the data in the system
and is the only access point to this information.

The data storage module enables access to physical
data stored within the data management system. The data
can be organized as files on computer file systems, binary
large objects (BLOBs) in databases or files on tapes or
optical disks in storage libraries. The data may be shared
using FTP, GASS or GridFTP protocols. Applying
multiple instances of the data storage module assures
uninterrupted data accessibility, even in case of network
or system failures. The data storage module delivers
operations allowing to create and delete files, reserve
container space, enable and disable access to files through
available data transfer protocols, lock and unlock files,
and retrieve information about the state of files and the
container free space.

The mirror and proxy module is currently under
implementation. We plan to add it in the upcoming
months. The module will relay communication between
clients and scientific databanks. These banks may be local
mirrors of databanks (like the PSNC’s mirror of the SRS
bank) or databanks available from the Internet. Web
Services operations of the mirror and proxy module will
enable to access external data as an internal node in the
DMS. This module will enable to describe external data
with meta-information stored in the meta repository
module. The functions of the mirror module will enable to
manage the replicas of external databases.

5. Conclusions

Numerous grid-portal environments have been
deployed around the world. Some of the most important
include San Diego Supercomputer Center’s HotPage [21],
Legion Grid Portal from the University of Virginia [22]
and NASA’s Information Power Grid [23]. Deployed
computing portals use grid portal frameworks like
SDSC’s GridPort [24], LBNL’s Grid Portal Development
Kit [25] or NICE’s Enginframe [26]. Although these
packages enable to create comfortable places for work
with the grid, they lack flexibility given by introducing
the Web Services technology. By utilizing this
technology the PROGRESS grid-portal environment
facilitates adding new components to the already
deployed infrastructure and building new computing
portals. These features are of key importance to the
presumptions made before undertaking the project.

It is also important to mention that there have been
similar approaches introduced recently. We believe that
the solutions like the one presented in [27] and
implementation of the OGSA architecture [28, 29] will
add more flexibility to grid-portal environments. We
think of integrating the latter into the PROGRESS
framework. Introducing grid service provider services in
the form of OGSA grid services should facilitate building
computing portals at even a bigger rate. Although we
believe our current implementation fulfills the

requirements of deployment flexibility and work place
comfortableness, we feel it is very important to integrate
the emerging standards into grid-portal environments.

The PROGRESS grid-portal environment with all
functionality described in this paper is currently online as
a testbed at http://progress.psnc.pl/portal. Its first
presentation took place at the Supercomputing 2002
exhibition.

6. References

[1] J. Rychlewski, J. Weglarz, S. Starzak, M. Stroinski, and M.
Nakonieczny, “PIONIER: Polish Optical Internet”, Proceedings
of ISThmus 2000 Research and Development for Information
Society conference, Poznan, Poland, 2000, pp. 19-28
[2] M. Kosiedowski, C. Mazurek, and M. Stroinski,
“PROGRESS - Access Environment to Computational Services
Performed by Cluster of Sun Systems”, Proceedings of The 2nd
Cracow Grid Workshop, Cracow, Poland, December 2002,
accessed from http://progress.psnc.pl/
[3] SRS System, accessed from http://srs.man.poznan.pl/
[4] J. Pukacki, and M. Wolniewicz, “Extended Resource
Specification Language”, accessed from http://progress.psnc.pl/
[5] M. Bogdanski, M. Kosiedowski, C. Mazurek, and M.
Wolniewicz, “Grid Service and Access Management within
User Service Environment”, presented to the Global Grid
Forum, Grid Computing Envrionments Research Group,
September 2002, accessed from http://progress.psnc.pl/
[6] M. Bogdanski, M. Kosiedowski, C. Mazurek, and M.
Wolniewicz, “GRID SERVICE PROVIDER: How to improve
flexibility of grid user interfaces?”, accepted for publication at
The 3rd International Conference on Computational Science,
June 2nd-4th 2003, St. Petersburg, Russia, accessed from
http://progress.psnc.pl/
[7] M. Bogdanski, M. Kosiedowski, C. Mazurek, and M.
Wolniewicz, “Facilitating access to grid resources with the use
of the HPC Window”, submitted for presentation at The 9th
International Conference on Parallel and Distributed Computing
Euro-Par 2003, August 26th-29th 2003, Klagenfurt, Austria,
accessed from http://progress.psnc.pl/
[8] “PROGRESS HPC Portal”, accessed from
http://progress.psnc.pl/portal/
[9] M. Kupczyk, R. Lichwala, N. Meyer, B. Palak, M.
Plociennik, and P. Wolniewicz, “Roaming Access and
Migrating Desktop”, Proceedings of The 2nd Cracow Grid
Workshop, Cracow, Poland, December 2002
[10] M. Chmielewski, A. Gowdiak, S. Fonrobert, N. Meyer, and
T. Ostwald, “VALIS/Valkyrie”, Proceedings of The 2nd Cracow
Grid Workshop, Cracow, Poland, December 2002

[11] “Resource Access Decision, Version 1.0”, accessed from
http://www.omg.org/technology/documents/formal/resource_acc
ess_decision.htm
[12] “Global Access and Secondary Storage (GASS)”, accessed
from http://www-fp.globus.org/gass/
[13] “The GridFTP Protocol and Software”, accessed from
http://www-fp.globus.org/datagrid/gridftp.html
[14] Sun Open Net Environment (Sun ONE), accessed from
http://wwws.sun.com/software/sunone/
[15] Apache SOAP, accessed from http://ws.apache.org/soap/
[16] Jetty Java HTTP Servlet Server, accessed from
http://jetty.mortbay.org/jetty/
[17] Apache Axis, accessed from http://ws.apache.org/axis/
[18] The Jakarta Project, accessed from
http://jakarta.apache.org/
[19] P. Grzybowski, C. Mazurek, P. Spychala, and M. Wolski,
“Data Management System for grid and portal services”,
submitted to Grid Computing: Infrastructure and Applications
special issue of The International Journal of High Performance
Computing Applications (IJHPCA), Cardiff University, UK.,
accessed from http://progress.psnc.pl/
[20] Dublin Core standard, accessed from
http://www.dublincore.org/
[21] NPACI HotPage Grid Computing Portal, accessed from
https://hotpage.npaci.edu/
[22] A. Natrajan, A. Nguyen-Tuong, M. A. Humphrey, and S.
Grimshaw, “The Legion Grid Portal”, accessed from
http://legion.virginia.edu/papers.html
[23] Information Power Grid, accessed from
http://www.ipg.nasa.gov/
[24] M. Thomas, S. Mock, J. Boisseau, M. Dahan, K. Mueller,
and D. Sutton, “The GridPort Toolkit Architecture for Building
Grid Portals”, Proceedings of the Tenth IEEE International
Symposium On High Performance Distributed Computing, 2001
[25] J. Novotny, “The Grid Portal Development Kit”, accessed
from http://www.cogkits.org
[26] Enginframe, accessed from http://www.enginframe.com/
[27] M. Pierce, G. Fox, Ch. Youn, S. Mock, K. Mueller, and O.
Balsoy, “Interoperable Web Services for Computational
Portals”, Proceedings of Supercomputing 2002, Baltimore
[28] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The
Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration”, Open Grid Service
Infrastructure WG, Global Grid Forum, June 2002, accessed
from http://www.globus.org/research/papers.html
[29] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
and C. Kesselman, “Grid Service Specification”, Open Grid
Service Infrastructure WG, Global Grid Forum, July 2002,
accessed from http://www.globus.org/research/papers.html

